

APPENDIX A

SOLUTIONS TO MULTIPLE CHOICE QUESTIONS

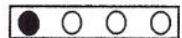
CHAPTER 1

Problem No.	Brief Explanation	Correct Answer A B C D
1.1	When two earth plates moves apart from each other, the earth movements creates a ridge	<input type="radio"/> <input type="radio"/> <input type="radio"/> <input checked="" type="radio"/>
1.2	When a hanging wall moves up a footing wall during an earthquake, the movement is known as normal fault	<input type="radio"/> <input type="radio"/> <input checked="" type="radio"/> <input type="radio"/>
1.3	Earthquake origination on the earth surface is known as the epicenter.	<input type="radio"/> <input checked="" type="radio"/> <input type="radio"/> <input type="radio"/>
1.4	A plate moving underneath another plate is known as subduction	<input checked="" type="radio"/> <input type="radio"/> <input type="radio"/> <input type="radio"/>
1.5	California San Andreas fault is right lateral strike slip movement	<input checked="" type="radio"/> <input type="radio"/> <input type="radio"/> <input type="radio"/>
1.6	P-waves displace materials just ahead or behind their line (direction) of propagation. S-waves displace materials vertically and horizontally.	<input type="radio"/> <input type="radio"/> <input checked="" type="radio"/> <input type="radio"/>
1.7	When a seismic sea wave (Tsunami) approaches sea shore, the wave velocity decreases and the height increases	<input type="radio"/> <input type="radio"/> <input type="radio"/> <input checked="" type="radio"/>
1.8	Shear waves causes more damages than Primary waves to structures	<input type="radio"/> <input type="radio"/> <input checked="" type="radio"/> <input type="radio"/>
1.9	Tsunami can be best described as seismic sea waves	<input type="radio"/> <input checked="" type="radio"/> <input type="radio"/> <input type="radio"/>
1.10	Seismic waves are generated by sudden snap of rock formation within earth crust	<input type="radio"/> <input type="radio"/> <input checked="" type="radio"/> <input type="radio"/>

CHAPTER 2

Problem No.	Brief Explanation	Correct Answer A B C D
2.1	Hazard level is defined using earthquake probability of exceedance	<input checked="" type="checkbox"/> <input type="radio"/> <input type="radio"/> <input type="radio"/>
2.2	Earthquake magnitude is determined from the logarithm of recorded amplitude	<input type="radio"/> <input checked="" type="checkbox"/> <input type="radio"/> <input type="radio"/>
2.3	The Modified Mercalli scale is commonly used to determine earthquake intensity	<input type="radio"/> <input type="radio"/> <input checked="" type="checkbox"/> <input type="radio"/>
2.4	Modified Mercalli Scale has 12 categories for earthquake intensity	<input type="radio"/> <input type="radio"/> <input type="radio"/> <input checked="" type="checkbox"/>
2.5	Attenuation of ground motions indicates a decrease in seismic energy far from the earthquake epicenter	<input type="radio"/> <input checked="" type="checkbox"/> <input type="radio"/> <input type="radio"/>
2.6	A seismometer is used to measure earthquake displacement amplitude with time	<input type="radio"/> <input type="radio"/> <input type="radio"/> <input checked="" type="checkbox"/>
2.7	Attenuation of ground motions is not influenced by earthquake magnitude	<input checked="" type="checkbox"/> <input type="radio"/> <input type="radio"/> <input type="radio"/>
2.8	An increase in earthquake magnitude by one whole number represents 10 fold increases in vibration amplitude. Two whole number increase yields 100 fold increases	<input type="radio"/> <input type="radio"/> <input checked="" type="checkbox"/> <input type="radio"/>
2.9	An increase in earthquake magnitude by one whole number represents 32 fold increases in energy release. Two whole number increase yields approximately 1000 fold increases	<input type="radio"/> <input type="radio"/> <input type="radio"/> <input checked="" type="checkbox"/>
2.10	Soil liquefaction is best described as an increase in pore water pressure causing severe drop/loss of shear strength of soil	<input checked="" type="checkbox"/> <input type="radio"/> <input type="radio"/> <input type="radio"/>
2.11	Soil liquefaction occurs when soil formation are composed of saturated loose sand	<input type="radio"/> <input checked="" type="checkbox"/> <input type="radio"/> <input type="radio"/>
2.12	Vulnerability of welded steel frame buildings was one of the most notable lessons learned from Northridge Earthquake 1994	<input checked="" type="checkbox"/> <input type="radio"/> <input type="radio"/> <input type="radio"/>
2.13	Ground motions are greatly amplified when passing through geologic formation mostly composed of soft soil (soft clay or bay mud)	<input type="radio"/> <input type="radio"/> <input checked="" type="checkbox"/> <input type="radio"/>
2.14	Field Act assigned responsibility for approving design of public schools to Division of State Architecture	<input type="radio"/> <input checked="" type="checkbox"/> <input type="radio"/> <input type="radio"/>
2.15	From TABLE 2.1, MM scale IX indicates considerable damage to structures from earthquake event	<input type="radio"/> <input checked="" type="checkbox"/> <input type="radio"/> <input type="radio"/>
2.16	Resonance amplifies the vibration amplitude when any of the earthquake period/frequency, site (soil) period/frequency, and building period/frequency coincide with any or each other periods/frequencies. All of the above	<input type="radio"/> <input type="radio"/> <input type="radio"/> <input checked="" type="checkbox"/>
2.17	Hazard level 3%, n = 75 years	<input type="radio"/> <input type="radio"/> <input type="radio"/> <input checked="" type="checkbox"/>
	$P_e = 1 - (1 - P_a)^n = 1 - (1 - 1/Tr)^n$	
	$0.03 = 1 - (1 - 1/Tr)^{75}$	
	$(0.97)^{1/75} = 1 - 1/Tr \quad 0.9995939 = 1 - 1/Tr$	

$$0.000406 = 1/Tr \quad Tr = 2463 \text{ years} = 2500 \text{ year}$$



2.18 Longer duration of ground shaking is likely to increase the damage to structures during earthquake. Larger attenuation and distance to epicenter is likely to reduce the damage. S waves (secondary) not P waves (primary) is the cause of damage to structures

2.19 Raleigh waves has a relatively large predominate earthquake period that coincide with the natural period of a tall high-rise building

2.20 large duration of ground shaking, liquefaction potential, poor seismic detailing are more likely to cause severe damage. Less likely with small PGA, large distance to epicenter and new construction
